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Propagating Modes Along a Thin Wire Located
Above a Grounded Dielectric Slab

EDWARD F. KUESTER, MEMBER, IEEE, AND DAVID C. CHANG, SENIOR MEMBER, IEEE

Abstract—The possible propagating modes supported by a wire
located parallel to a grounded dielectric slab are investigated. While
at low frequencies, a “quasi-TEM?”’ behavior is exhibited, it is shown
numerically that under certain conditions, a very different “surface-
attached” character emerges. These results suggest the possibility of
similar behavior occurring in the related, but more difficult to
analyze configuration of open microstrip lines. The particular struc-
ture we analyze here is of interest mainly because of its potential
application in air strip ground radar monitoring systems, which
conceivably can consist of a horizontal wire located above a rein-
forced concrete slab lying above a conducting earth surface.

I. INTRODUCTION

T HAS recently been found [1], [2] that a thin horizontal
Iwire located parallel to a conducting earth can support a
so-called “earth-attached” mode in addition to the well-
known “transmission line” mode which becomes TEM in
the limit of a perfectly conducting earth. The physical
mechanism which gives rise to this new mode seems to be an
interaction of the wire with the Zenneck surface wave of the
air—earth interface. If, instead of a semi-infinite earth, the
wire is located above a grounded dielectric slab, as shown in
Fig. 1, it seems possible that similar interaction could occur
with the TM surface wave of the slab (whose surface wave
character is more pronounced than that of the Zenneck
wave), and that a second mode could appear in this case as
well. Among other possible applications, such a structure
conceptually could be a very practical one to use in the
development of air strip or perimeter monitoring systems
installed above a reinforced concrete slab of finite thickness
lying on the top of a conductive earth. In addition it may also
give some insight into the structurally similar microstrip
transmission line at much higher frequencies. However, with
the use of a thin-wire assumption, there is no need to solve an
integral equation for the current in the conductor (as is the
case with microstrip) before finding the equation for the
propagation constant. It can thus be decided by studying
the present configuration whether such a phenomenon as
conjectured above could be expected in microstrip, before
actually going through the analysis. Since the only previous
related work seems to have been an investigation of a wire
centered in an ungrounded slab [3], in which case, no TEM
mode exists in the low frequency limit, the analysis of the
present problem also seems desirable for the better under-
standing of other problems involving, for example, the
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properties of two-wire transmission lines partially filled with
dielectric.

II. FORMULATION OF THE MoDAL EQUATION

Let the thickness of the slab be ¢, and its relative permit-
tivity ¢, = n®. The wire, whose radius is a, is located at a
height d above the surface of the slab. The characteristic
equation for propagating modes can be derived in a thin-
wire approximation by following the procedure of Wait [4]
who treated a wire over the earth. We shall therefore omit
most of the detail in the derivation, touching only high
points and presenting the final result.

It is assumed that a current I exp (iko az — icwt)is flowing
in the wire, where kg = w(u, &,)"/* is the free space propaga-
tion constant, and « is the normalized propagation constant
of a mode on the wire. The z-axis coincides with the axis of
the wire, while the x- and y-coordinates in the transverse
plane are indicated in Fig. 1. The field of this current can be
given in terms of the Whittaker potentials (z-components of
electric and magnetic Hertz vectors) U and V as
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E, = (k* + 8%/6z*)U, H, = (k2 + 8*3z4)V. (1)

The potentials U and V can be given as Fourier integrals
with respect to y as follows (I is chosen to eliminate a
constant appearing outside all the integrals, and the propa-
gation factor exp (iko az — iwt) is understood to appear in
all field quantities)
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Fig. 1. Geometry of wire over grounded slab.

where, in order to assure convergence of the integrals,

Uy = (/12 _ C2)1/2, U, = (/12 _ C’%)l/Z, Re U > 0

(6)
and (’=1—0a? (2=n?>—0a> The sign of u, will be
irrelevant since all functions encountered here are evenin u,.

By enforcing continuity of tangential E and H at x = 0,
and the vanishing of tangential E at x = —t, a system of
equations for the unknowns P, R, S, M, N, and Q is obtained.
In particular, after some algebra, it is found that

2uy sinh u, T

{2uy cosh uy T + (Puy sinh u, T
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Fig. 2. Branch cuts in the a-plane.

The integrand of (9) therefore has poles +4,;, +4,5, ",
+ A,v, the total number 2N of which that lie in the Riemann
sheet (6)depends upon the thickness T and refractive index n
of the slab. Since the path of integration in the A-plane lies on
the real axis, it is convenient to choose the + 4, to be those
with positive imaginary part. Each pole is a function of «,
and if « varies such that some pole 4, crosses the integration
path, a discontinuity occurs in F(x) as well as in the

R(A)= -1+

where T = k, t is a normalized slab thickness. This could be
considered as one of the special cases of a stratified half-
space discussed by Wait [5]. The modal equation deter-
mining « is found in the thin-wire approximation (koa < 1,
a < d) by enforcing the boundary condition E, =0 at a
single point on the wire [4] or by setting its average value at
the wire surface equal to zero [2]. From (1), (2), and (7), we
find

CHS(A) ~ HE@LD)] + Fla) =0

where H{M is the Hankel function of first kind

®)

;2 [uy sinh u, T + u, cosh u, T][n*u, cosh u, T + u, sinh u, T

[(2u; cosh u, T + (Pu, xinh u, T] sinh u, T

(7)

expressions for the fields, so that Im 4,; = 0 in fact define a
set of branch cuts in the a-plane at +a,; asshown in Fig. 2,in
addition to the already known pair at « = + 1. Physically,
these cuts correspond to fields radiating away from the wire,
along the slab into the given surface wave, at various
(possibly complex) angles to the wire, with a normalized
wave number « in the z-direction and 4 in the y-direction.
The requirement Im 4,; > 0 assures that none of the surface
waves grow as they move away from the wire. We further
note that, independent of the thickness of the slab, thereis at
least one TM pole in the solution to the slab at any given
frequency. Thus it is not difficult to understand why the

e 2L D,

A=k0a, D=k0d
and
2 @
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The value of { is to be chosen so that Im { > 0 ensuring a
mode which is bounded at infinity in any transverse direc-
tion in the air.

As n— o0 or T — 0, it can be seen that F(x) — 0, and thus
the first two terms of (8) represent the effect of a wire and a
perfect image at a distance d below the surface of the slab.
Similarly, as n? — 1, the terms in (8) can be identified as the
wire term and a perfect image term at adistanced + t below
the grounding conductor. In any of these limits, the solution
is{?> = 0oro = +1, and the mode is a TEM mode traveling
on the wire-image transmission line. Clearly F(«) represents
the effect of the slab; in fact, the factor [u, sinh u, T +
u, cosh u, T]in the denominator of (9)is, when set equal to
zero, the eigenvalue equation for TE surface waves on the
grounded slab [6] in the absence of the wire, where u is the
attenuation constant in the vertical direction. Likewise,
the factor [n?u, cosh u, T + u, sinh u, T] corresponds to
TM surface waves.

— e [ty sinh u, T + u, cosh u, T][n*u; cosh u, T + u, sinh u, T}

©)

transverse field of the wire structure in the presence of the
slab could be substantially different from one determined
from a quasi-static analysis.

III. APPROXIMATE FORM OF THE
CHARACTERISTIC EQUATION

Before we attempt to find the solution of the modal
equation as given in (8) on a computer by computing F(c)
using numerical integration, we shall derive an analytical
form of (8) under a thin-slab approximation which preserves
the essential features of interest in the problem, but allows
the propagation constants to be found without extraneous
numerical computation. Such an approach is not only more
efficient computationally, but also can give physical insight
into the impact of the surface-wave on the guided wave of a
wire above a grounded slab.

If the condition (n* — 1)>T < 1 is satisfied, there are no
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TE modes on the slab, and only one TM mode (thus only
one pair of poles which we denote +4,). Under the addi-
tional constraint T> < D?, the damping influence of the
exponential in (9) allows us to replace the hyperbolic
functions by their small argument forms, giving

2 S“’ Goug + 23T
it oy (uy + YT)n?uy +u3T)

which further reduces to

F(o) ~

e” 2P dj (10)

F(o)
~ _2_ 1 OCZ OCZBZ —2uyD
T in S_oo[ul + T uy+ ”2/T+ Uy — ﬂ]e “
(11)
where
B=(n* — 1)T/n* (12)

is the approximate location of the value of u, for the TM
surface wave (these approximations are seen to be related to
the surface impedance characterization of a conducting
plane with a thin dielectric coating [6]).

The first two terms of (11) can be evaluated as follows:

® ~2ur D 2 ™ T )
.; . = ind J. __Lll_w_e—,zulpdi
inJ_,u +1/T in Ly u(1+u T)
N 3 © sinh ulTe—u1(2D+T) i
i uy

= HP(2(D) — HPQLUD + T)) (13)
and likewise

2 0 e~2u1D
in j;oo u; + nZ/Td
~ HP(LD) - HPQUD + Tin*). (14)

Integrals similar to the last term of (11) are encountered in
the wire over earth problem [2], [7], [8], where methods for
their approximate evaluation are given. We do not repeat
the derivation here, but quote the result, valid under the
additional constraint of |{D| < 1

2 © e—2u1D
£ di~ 2HWD
) u—p 2H(2(D)
4 B

+ o s [n — arctan
; 2 2
in Ja* — o B

y)

where
ay = 1+ ) (16)

denotes the location of the propagation constant for the
lowest order TM mode of the slab. The square roots
/o? — o are to be chosen with positive real part in order to
correspond to Im 2, > 0; note that o must be larger than a7,
in order for the surface wave to decay away from the wire.
Furthermore, the singularity in (15) at « = a, should be
noted. Now since the existence of this term results only from
the excitation of the TM surface wave on the slab, this
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Fig. 3. Comparison of propagation constants «a calculated from exact
(8)—E; approximate (17)—A; quasi-TEM approximation (18}—QT;
n=15,kya=10"* D = 10. Dotted line indicates exact value of «,.

singular term simply reflects the dominance of the surface-
wave effect whenever the propagation constant o of a guided
mode is located near o,

By combining (8), (11), (13), (14), and (15), we obtain the
approximate modal equation after taking small argument
forms for HY:

2(D + T/n? 20+ T

oy 02T 20T
+2a2B2=InD =14y Zﬁ >
o — o2

232

where y = 0.5772 --- is Euler’s constant and (/a* — 1 is
taken to have positive real part.

Let us seek a perturbation solution of (17). For sufficiently
low frequencies, § — 0, and provided that «* — o3 is not too
small, we find the quasi-TEM approximation

oo In 20+ TY4] B
~In [2(D + T/n*)/A] D In (2D/A)’

Comparing (16) and (18), we see that in order to be a proper
mode (o¢* > o) we must have

[n — arctan

~1+ (18)

BD In 2D/A) < 1 (19)
which is certainly satisfied in the low frequency limit.

If (19)is not satisfied, the term which is singular at o, may
be important and should not then be neglected. A numerical
solution of (17) must then be obtained.

I1V. NumericaL ResuLTs

In order to test the validity of the approximate modal
equation (17), its numerical solution was compared with a
numerical solution of the exact modal equation (8) using
F(«) obtained by a numerical integration of (9). Thelatter E,
as well as the solution of (17), 4, is shown in Fig. 3forn = 1.5
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Fig. 4. Propagation constants from (17)—4; and quasi-TEM (18)—QT;
n=30,D =10, kya = 10"* Dotted line indicates approximate value
of a,, from (16).

and D = 1.0. Reasonable agreement is found over the entire
range of T upto0.5;indeed, it is rather better than one could
expect from the stated approximations. As expected, of
course, best agreement is obtained for T < 0.1. The quasi-
TEM prediction (18) is also displayed QT; for T > 0.1 the
error in (¢ — 1) is on the order of hundreds of percent. The
reason for this failure of quasi-TEM theory can be seen by
inspecting (17). For small enough T, condition (19) holds
and («, — 1) is far enough from (x— 1) to leave (18)
unaffected. As Fig. 3 shows, however, a as given by (18)soon
violates (19), while the actual value of o is “dragged”
upwards by the influence of «,,. It is clear that for values of T
larger than about 0.2, the mode is heavily influenced by the
TM surface wave of the slab, and is no longer given even
approximately by quasi-TEM theory. It is thus to be
expected that the fields of the mode, when it has attained this
“surface-attached” character, will spread out along the slab
away from the wire to a much greater extent than those of a
quasi-TEM mode. Similar behavior has been found in the
wire over earth problem [1], [2].

Fig. 4 shows results for a substrate of higher refractive
index (n = 3); similar behavior to that of Fig. 3 is observed.
In Fig. 5, the (rather small) effect of the value of D on the
solution of (17) is shown.

V. LEaky MODES

It was speculated in the Introduction that because of the
surface-wave interaction mechanism present here as well as
in the wire over earth situation, a second mode, which
appears in the latter case, could also occur here. However,
no such second solution of (17) could be found numerically
near o« = 1, o, or n. It can be argued that the lossy earth can
be obtained from this problem by continuously increasing
the loss of n and letting T — c0. The question naturally
arises: what happens to the second mode? There is, after all,
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Fig. 6. Propagation constants for leaky modes from (17) for n = 1.5,
koa = 10~* Modes occur in pairs symmetric about real axis.

a limited number of things that can happen. It seems most
likely that the second mode has disappeared into a branch
cut, and lies on an improper Riemann sheet, a leaky mode
[9]. Unfortunately the continuous transition to the lossy
half-space cannot be carried out on (17) because of the
thin-slab approximations involved. However, it seems most
likely that the cut associated with o, (which is responsible for
the existence of a second mode on the wire over earth) may
be “hiding” this leaky mode. A search of the complex a-plane
with the sign of | /o> — o2 reversed in (17) (i.e., the Riemann
sheet Im { > 0, Im 4, < 0) revealed the existence of a leaky
mode, with values of « occurring in complex conjugate pairs
as is well known for such modes [9]. The trajectories of these
modes for n = 1.5 are shown in Fig. 6 (only the modes with
positive imaginary part are given).

It thus appears that the second mode in the case of a slab
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has been forced into the improper Riemann sheet of the
a-plane because of the absence of loss. Such a mode,
although improper, can be expected to exert some influence
in the radiation spectrum of a guiding structure. Although it
is impossible to trace this continuous transition under our
approximation, the passage of proper modes into improper
sheets has been observed in other problems upon contin-
uous variation of the loss [10], [11] or other waveguide
parameters [12], [13].

VI. CoNncLusION

The numerical results presented here indicate that strong
interaction with the TM surface wave of the slab can occur
as the electrical thickness of the slab becomes significant.?
A second leaky mode has been found which is probably
related to the second mode in the wire over earth problem.
Both modes are influenced by the singular term in (17) which
reflects the surface-wave influence, which thus cannot be
neglected in these parameter ranges. A similar singular term
has been found in an analysis of microstrip [14] but was
neglected in solving the characteristic equation; a recent
treatment of optical stripline waveguides [15] notes this
singularity as well. The explicit display of this singularity
gives physical insight into the reason why neither TEM nor
quasi-TEM theory is sufficient for such waveguides operat-
ing at significant electrical dimensions. It should be em-
phasized, of course, that these results are not directly
applicable to microstrip (because of the assumption
T? < D?), and that the surface-attached phenomenon is
implicit in numerically exact solutions [16].

It should also be noted that in the range where coupling to
the surface wave is significant (e.g., T greater than 0.2 in the
examples studied here) the proper mode is almost entirely
made up of the surface-wave field, which decays as
exp (—Pkox) above the wire, but only as
exp (—+/a® — o ko |y|) in the lateral direction. Since, in
the case of Fig. 3, for T =04, we have f~023 and
Vo — o} ~ 0.086 (exact values), it is seen that the mode in
a surface-attached condition will be concentrated in the
vicinity of the slab, and this property may be usefulin guided
radar configurations.

! The interaction of the wire with the TM surface wave has been
interpreted in a more qualitative manner using coupled mode theory [17].
From this viewpoint the uncoupled modes are the quasi-TEM mode of
(18) and the TM surface wave on a slab of large but finite width.
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