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Propagating Modes Along a Thin Wire Located
Above a Grounded Dielectric Slab

EDWARD F. KUESTER, MEMIBER, IEEE, AND DAVID C. CHANG, SENIOR MEMBER, IEEE

Abstract—The possible propagating modes supported by a wire

located parallel to a grounded dielectric slab are investigated. While
at low frequencies, a “quasi-TEM” behavior is exhibited, it is shown
numerically that under certain conditions, a very different “surface-

attached” character emerges. These results suggest the possibility of
similar behavior occurring in the related, but more difficult to

analyze configuration of open microstrip lines. The particular struc-

tnre we analyze here is of interest mainly because of its potential

application in air strip ground radar monitoring systems, which

conceivably can consist of a horizontal wire located above a rein-

forced concrete slab lying above a conducting earth surface

I. INTRODUCTION

I T HAS recently been found [1], [2] that a thin horizontal

wire located parallel to a conducting earth can support a

so-called “earth-attached” mode in addition to the well-

known “transmission line” mode which becomes TEM in

the limit of a perfectly conducting earth. The physical

mechanism which gives rise to this new mode seems to be an

interaction of the wire with the Zenneck surface wave of the

air–earth interface. If, instead of a semi-infinite earth, the

wire is located above a grounded dielectric slab, as shown in

Fig. 1, it seems possible that similar interaction could occur

with the TM surface wave of the slab (whose surface wave

character is more pronounced than that of the Zenneck

wave), and that a second mode could appear in this case as

well. Among other possible applications, such a structure

conceptually could be a very practical one to use in the

development of air strip or perimeter monitoring systems

installed above a reinforced concrete slab of finite thickness

lying on the top of a conductive earth. In addition it may also

give some insight into the structurally similar rnicrostrip

transmission line at much higher frequencies. However, with

the use of a thin-wire assumption, there is no need to solve an

integral equation for the current in the conductor (as is the

case with microstrip) before finding the equation for the

propagation constant. It can thus be decided by studying

the present configuration whether such a phenomenon as

conjectured above could be expected in micrclstrip, before

actually going through the analysis. Since the only previous

related work seems to have been an investigate ion of a wire

centered in an ungrounded slab [3], in which case, no TEM

mode exists in the low frequency limit, the analysis of the

present problem also seems desirable for the better under-
standing of other problems involving, for example, the
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properties of two-wire transmission lines partially filled with

dielectric.

II. FORMULATION OF THE MODAL EQUATION

Let the thickness of the slab be t,and its relative permit-

tivity er = n2. The wire, whose radius is a, is located at a

height d above the surface of the slab. The characteristic

equation for propagating modes can be derived in a thin-

wire approximation by following the procedure of Wait [4]

who treated a wire over the earth. We shall therefore omit

most of the detail in the derivation, touching only high

points and presenting the final result.

It is assumed that a current 1 exp (ikO m – imt) is flowing

in the wire, where k. = CO(PO&o)1/2 is the free space proPaL3a-

tion constant, and IXis the normalized propagation constant

of a mode on the wire. The z-axis coincides with the axis of

the wire, while the x- and y-coordinates in the transverse

plane are indicated in Fig. 1. The field of this current can be

given in terms of the Whittaker potentials (z-components of

electric and magnetic Hertz vectors) U and V as

E== (kz + i32/&2)U, Hz= (k2 + d2/dz2)v. (1)

The potentials U and V can be given as Fourier integrals

with respect to y as follows (1 is chosen to eliminate a

constant appearing outside all the integrals, and the propa-

gation factor exp (iko az – i~t) is understood to appear in

all field quantities)

U = . f~ [e-kod=d + ~(~)e-koai(x+d)]
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Fig. 1. Geometry of wire over grounded slab.

where, in order toassure convergence of the integrals,

U1 = (~z–(y, 242= (12–(:)1’2, Reul>O

(6)

and ~2= 1 –ct2, ~~=n2–a2. The sign of U2 will be

irrelevant since all functions encountered here are even in u ~.

By enforcing continuity of tangential E and ~ at x = O,

and the vanishing of tangential E at x = – t, a system of

equations for the unknowns P, R, S, M, N, and Q is obtained.

In particular, after some algebra, it is found that

Fig. 2. Branch cuts in the u-plane.
—

The integrand of (9) therefore has poles + API, t JP2, “” ~,

~ IPV, the total number 2N of which that lie in the Riemann

sheet (6) depends upon the thickness T and refractive index n

of the slab. Since the path of integration in the A-plane lies on
the real axis, it is convenient to choose the + APi to be those

with positive imaginary part. Each pole is a function of a,

and if a varies such that some pole ~P,crosses the integration

path, a discontinuity occurs in F(u) as well as in the

2U1 sinh U2T
R(l)=–1+

(k cd U2 T + C2U2 sinh U2 T

(2 [u, sinh U2 T + u, cosh U2 T][n’ul cosh U2 T + U2 sinh U2 T]
(7)

where T = k. t is a normalized slab thickness. This could be

considered as one of the special cases of a stratified half-

space discussed by Wait [5]. The modal equation deter-

mining a is found in the thin-wire approximation (k. a <1,

a < d) by enforcing the boundary condition E= = O at a

single point on the wire [4] or by setting its average value at

the wire surface equal to zero [2]. From (1), (2), and (7), we

find

C’[Hi’)(CA) – Hg)(2@)] + F@’.) = o (8)

where H~l) is the Hankel function of first kind

A = koa, D=kod

and

expressions for the fields, so that Im lpi = O in fact define a

set of branch cuts in the a-plane at +-a~i as shown in Fig. 2, in

addition to the already known pair at a = f 1. Physically,

these cuts correspond to fields radiating away from the wire,

along the slab into the given surface wave, at various

(possibly complex) angles to the wire, with a normalized

wave number a in the z-direction and APiin the y-direction.

The requirement Im & >0 assures that none of the surface

waves grow as they move away from the wire. We further

note that, independent of the thickness of the slab, there is at

least one TM pole in the solution to the slab at any given

frequency. Thus it is not difficult to understand why the

[~t?~~ cosh U, T + K2U2 ,inh U2 T] sinh U2T ~– 2u1 L DA,

‘(a) = ~ ~~ [u sinh U2 T + U2 cosh U2 T][iz2u1 cosh U2T + UZ sinh u’ T]w 1

(9)

The value of ~ is to be chosen so that Im ~ >0 ensuring a

mode which is bounded at infinity in any transverse direc-

tion in the air.

As n + co or T-+ O,itcan be seen that F(a) -+ O, and thus

the first two terms of (8) represent the effect of a wire and a

perfect image at a distanced below the surface of the slab.
Similarly, as n2 + 1, the terms in (8) can be identified as the

wire term and a perfect image term at a distance d + t below

the grounding conductor. In any of these limits, the solution

is {2 = Oor u = + 1, and the mode is a TEM mode traveling

on the wire-image transmission line. Clearly F(a) represents

the effect of the slab; in fact, the factor [u ~ sinh Uz T +

U2 cosh U2 T] in the denominator of (9) is, when set equal to

zero, the eigenvalue equation for TE surface waves on the

grounded slab [6] in the absence of the wire, where u ~is the

attenuation constant in the vertical direction. Likewise,

the factor [nzul cosh U2 T + U2 sinh U2 T] corresponds to

TM surface waves.

transverse field of the wire structure in the presence of the

slab could be substantially different from one determined

from a quasi-static analysis.

III. APPROXIMATE FORM OF THE

CHARACTERISTIC EQUATION

Before we attempt to find the solution of the modal

equation as given in (8) on a computer by computing F(a)

using numerical integration, we shall derive an analytical

form of(8) under a thin-slab approximation which preserves

the essential features of interest in the problem, but allows

the propagation constants to be found without extraneous

numerical computation. Such an approach is not only more

efficient computationally, but also can give physical insight

into the impact of the surface-wave on the guided wave of a

wire above a grounded slab.

If the condition (n2 – 1)1’2 T <1 is satisfied, there are no
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TE modes on the slab, and only one TM mode (thus only

one pair of poles which we denote +“2P). Under the addi-

tional constraint T2 < D2, the damping influence of the

exponential in (9) allows us to replace the hyperbolic

functions by their small argument forms, giving
‘:1 ~:

<:ul + [’u; T
e-2u’D dl (10) I .03

a‘@) = # !~m (UI + l/T)(n2U1 + @T)

t
which further reduces to

F(a)

where

/’
/’ (E’iAci_)

//
/

/
1.02 –

a’ ~2fi2 1
1.01 –

— (z-’”’” drl
U1 + n2/T+ Ul – /3

(11)

P = (n’ – l)T/n2
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Fig. 3. Comparison of uro~aeation constants IX calculated from exact

(12)
(8)–E; approximate (17~~; quasi-TEM approximation (18~QT;
n = 1.5, k. a = 10–4, D = 1.0. Dotted line indicates exact value of aP,

is the approximate location of the value of u, for the TM

surface wave (these approximations are seen to be related to

the surface impedance characterization of a conducting
singular term simply reflects the dominance of the surface-

plane with a thin dielectric coating [6]).
wave effect whenever the propagation constant u of a guided

The first two terms of (11) can be evaluated as follows:
mode is located near LXP.

By combining (8), (11), (13), (14), and (15), we obtain the

2m e–2u1D

-J
dl = ~ {~’ ~l(lu~~l T, e-:’UIDdl

approximate modal equation after taking small argument

iz -~ul+ l/T forms for H~l):

2

i

~ sinh U1 T _.— e ‘1(2’~+’) dl
in ._~ u~

.

= H$)(2~D) – H~1)(2L(D + T)) (13)

and likewise

2m e–2u1D

-J d~
in _a U1 + n2/T

m H~1)(2~D) – If&)(2~(D + T/n2)). (14)

Integrals similar to the last termof(11 ) are encountered in

the wire over earth problem [2], [7], [8], where methods for

their approximate evaluation are given. We dcl not repeat

the derivation here, but quote the result, valid under the

additional constraint of I@ I <1

where

up = (1 + p’)1” (16)

denotes the location of the propagation constant for the

lowest order TM mode of the slab. The square roots

~~aretobechosenwithpositive realpartinorderto
correspond to Im 2P > O; note that a’ must be larger than a;

in order for the surface wave to decay away from the wire.

Furthermore, the singularity in (15) at u = U,Pshould be

noted. Now since the existence of this term results only from

the excitation of the TM surface wave on the slab, this

2(D + T/n’) _ ~n 2(D + ‘)
O=u’in ~

A

[
7c-arctan T]\ (17)

where y = 0.5772 “”” is Euler’s constant and J’= is

taken to have positive real part.

Let us seek a perturbation solution of (17). For sufficiently

low frequencies, /? -+ O, and provided that ct2 – ctfi is not too

small, we find the quasi- TEM approximation

in [2(D + T)/A] b

a’= in [2(D + T/n2)/A] m 1 + Din (2D/A)”
(18)

Comparing (16) and (18), we see that in order to be a proper

mode (a’ > u;) we must have

/3D in (2D/A) <1 (19)

which is certainly satisfied in the low frequency limit.

If (19) is not satisfied, the term which is singular at aPmay

be important and should not then be neglected. A numerical

solution of (17) must then be obtained.

IV. NUMERICAL RESULTS

In order to test the validity of the approximate modal

equation (17), its numerical solution was compared with a

numerical solution of the exact modal equation (8) using

F(u) obtained by a numerical integration of (9). The latter E,

as well as the solution of (17), .4, is shown in Fig. 3 for n = 1.5
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Fig. 4. Propagation constants from (17)—A; and quasi-TEM (18~Q7’;
~ = 3,0, D = 1.0, k. a = 10-4. Dotted line indicates approximate value

of ctP from (16).

and D = 1.0. Reasonable agreement is found over the entire

range of T up to 0.5; indeed, it is rather better than one could

expect from the stated approximations. As expected, of

course, best agreement is obtained for T <0.1. The quasi-

TEM prediction (18) is also displayed QT; for T >0.1 the

error in (IX– 1) is on the order of hundreds of percent. The

reason for this failure of quasi-TEM theory can be seen by

inspecting (17). For small enough T, condition (19) holds

and (LXP– 1) is far enough from (U – 1) to leave (18)

unaffected. As Fig. 3 shows, however, a as given by (18) soon

violates (19), while the actual value of u is “dragged”

upwards by the influence of UP.It is clear that for values of T

larger than about 0.2, the mode is heavily influenced by the

TM surface wave of the slab, and is no longer given even

approximately by quasi-TEM theory. It is thus to be

expected that the fields of the mode, when it has attained this

“surface-attached” character, will spread out along the slab

away from the wire to a much greater extent than those of a

quasi-TEM mode. Similar behavior has been found in the

wire over earth problem [1], [2].

Fig. 4 shows results for a substrate of higher refractive

index (n = 3); similar behavior to that of Fig. 3 is observed.

In Fig 5, the (rather small) effect of the value of D on the
solution of (17) is shown.

V. LEAKY MODES

It was speculated in the Introduction that because of the

surface-wave interaction mechanism present here as well as

in the wire over earth situation, a second mode, which

appears in the latter case, could also occur here. However,

no such second solution of (17) could be found numerically

near u = 1, aP, or n. It can be argued that the 10SSYearth can

be obtained from this problem by continuously increasing

the loss of n and letting T-+ CO. The question naturally

arises: what happens to the second mode? There is, after all,

t

kot

Fig. 5. Propagation constants from (17) for n = 1.5, k. a = 10-4. Dotted
tine indicates approximate value of a, from (16).
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Fig. 6. Propagation constants for leafcy modes from (17) for II = 1.5,
koa = 10-4. Modes occur in pairs symmetric about real axis.

a limited number of things that can happen. It seems most

likely that the second mode has disappeared into a branch

cut, and lies on an improper Riemann sheet, a leaky mode

[9]. Unfortunately the continuous transition to the Iossy
half-space cannot be carried out cm (17) because of the

thin-slab approximations involved. However, it seems most

likely that the cut associated with UP (which is responsible for

the existence of a second mode on the wire over earth) may

be “hiding” this leaky mode. A search of the complex u-plane

with the sign of ~~ reversed in (17) (i.e., the Riemann

sheet Im ~ >0, Im 1P < O) revealed the existence of a leaky

mode, with values of a occurring in complex conjugate pairs

as is well known for such modes [9]. The trajectories of these

modes for n = 1.5 are shown in Fig. 6 (only the modes with

positive imaginary part are given).

It thus appears that the second mode in the case of a slab
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has been forced into the improper Riemann sheet of the

a-plane because of the absence of loss. Such a mode,

although improper, can be expected to exert some influence

in the radiation spectrum of a guiding structure. Although it

is impossible to trace this continuous transition under our

approximation, the passage of propet- modes into improper

sheets has been observed in other problems upon contin-

uous variation of the loss [10], [11] or other waveguide

parameters [12], [13].

VI. CONCLUSION

The numerical results presented here indicate that strong

interaction with the TM surface wave of the slab can occur

as the electrical thickness of the slab becomes significant. 1

A second leaky mode has been found which is probably

related to the second mode in the wire over earth problem.

Both modes are influenced by the singular term in (17) which

reflects the surface-wave influence, which thus cannot be

neglected in these parameter ranges. A similar singular term

has been found in an analysis of microstrip [14] but was

neglected in solving the characteristic equation; a recent

treatment of optical stripline waveguides [15] notes this

singularity as well. The explicit display of this singularity

gives physical insight into the reason why neither TEM nor

quasi-TEM theory is sufficient for such waveguides operat-

ing at significant electrical dimensions. It should be em-

phasized, of course, that these results are not directly

applicable to microstrip (because of the assumption
T2 4 D2), and that the surface-attached phenomenon is

implicit in numerically exact solutions [16].

It should also be noted that in the range where coupling to

the surface wave is significant (e.g., T greater than 0.2 in the

examples studied here) the proper mode is almost entirely

made up of the surface-wave field, which decays as

+

exp ( – ~ko x above the wire, but only as
exp (– az – ct~ kO Iy I ) in the lateral direction. Since, in

the case of Fig. 3, for T = 0.4, we have P !> 0.23 and

== 0086 (exact values), itisseenthatlhemodein
a surface-attached condition will be concentrated in the

vicinity of the slab, and this property maybe useful in guided

radar configurations.

1 The interaction of the wire with the TM surface wave has been
interpreted in a more qualitative manner using coupled mode theory [17].
From this viewpoint the uncoupled modes are the quasiTEM mode of

(18) and the TM surface wave on a slab of large but finite width.
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